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Abstract

Diffusion Language Models (DLMs) enable parallel, any-order generation, offering new opportunities for
inference-time optimization compared to autoregressive models. Despite these advantages, recipes for
training DLMs at scale remain underexplored. We introduce RND1-Base, a general-purpose 30B-parameter
sparse mixture-of-experts DLM trained with a simple and scalable continual pretraining recipe. Follow-
ing a simple autoregressive-to-diffusion (A2D) conversion recipe, we continually pretrain an autoregressive
base model on 500B tokens to obtain a high-capacity DLM. RND1-Base achieves state-of-the-art perfor-
mance among general-purpose DLMs on common sense / reasoning (e.g., MMLU: 69.6%), STEM (e.g.,
GSM8K: 80.0%), and coding (e.g., MBPP: 65.4%) benchmarks. To our knowledge, this is the first open
effort to scale DLMs beyond 8B parameters. We release RND1-Base and our recipe to catalyze research
in post-training, inference, and architectural innovation in DLMs. Model weights, inference code, and
samples are available.

Code: https://github.com/RadicalNumerics/RND1
Correspondence: research@radicalnumerics.ai
Date: October 9, 2025
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Figure 1: Evaluation. Benchmark performance comparison of diffusion language models (DLMs): Dream-
7B Base (Ye et al., 2025), LLaDA-8B-Base (Nie et al., 2025), and RND1-Base (Ours).
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1 Introduction

Autoregressive (AR) modeling has been the dominant paradigm for large-scale language modeling over the
past decade. AR models generate text sequentially in a fixed left-to-right order, producing one token per
function evaluation. Recently, Diffusion Language Models (DLMs) have emerged as an alternative, enabling
parallel, flexible-order text generation and promising advances in the quality–efficiency frontier (Austin et al.,
2021a; Lou et al., 2024; Sahoo et al., 2024; He et al., 2023). However, recipes for training DLMs at scale
remain largely unexplored.

A key challenge in training high-quality DLMs is their relative scaling inefficiency (Prabhudesai et al.,
2025) e.g., direct DLM training requires more passes over a finite dataset to outperform direct AR training.
Moreover, AR models benefit from more mature infrastructure and well-understood training recipes.

To leverage the advantages of AR training for DLM scaling, we propose a simple continual pretraining recipe
to obtain large-scale DLMs from pretrained AR models, a procedure referred to as AR-to-Diffusion (A2D)
conversion. The connection is straightforward: AR models learn to predict next-token in a fixed left-to-right
order, while DLMs generalize this to predicting multiple tokens in flexible orders. This makes AR models a
strong initialization for DLM training. A2D can be viewed as customizing the training objective—specifically,
by learning multiple token orderings by leveraging the structure of autoregressive pretraining to trace an
efficient path from AR pretraining to a DLM. A2D conversion presents two key challenges: (1) How to
endow DLMs with bidirectional context capabilities during A2D conversion? AR models use
causal attention that restricts context to preceding tokens, whereas DLMs can leverage bidirectional context
for sequence modeling. (2) How to retain AR pretraining knowledge during A2D conversion? AR
models are trained on trillions of text tokens—encoding broad world knowledge—which must be preserved
during the conversion. Prior small-scale works address the first challenge using attention-mask annealing
(Gong et al., 2025; Ye et al., 2025), which requires design decisions such as mask transition policies and
annealing schedules. Further, AR knowledge retention during A2D conversion has received little attention.
In this work, we propose a simple single-stage continual pretraining recipe that directly addresses both
challenges: (1) we replace the causal mask with a bidirectional mask at initialization, avoiding design choices
associated with attention mask annealing techniques, and (2) we restrict updates to dense layers—specifically,
Mixture-of-Experts (MoE) layers—during A2D conversion to preserve AR model pretraining knowledge.

We introduce RND1-Base, a general-purpose 30B-parameter DLM trained on 500B tokens using our proposed
A2D recipe. RND1-Base achieves state-of-the-art performance among general-purpose DLMs on benchmarks
spanning common sense/reasoning (e.g., MMLU (Hendrycks et al., 2021): 69.6% , BBH (Suzgun et al.,
2023): 67.5% ), STEM (e.g., GSM8K (Cobbe et al., 2021): 80.0%), and coding (MBPP (Austin et al.,
2021b): 65.4%). We release RND1-Base and our A2D methods to provide a foundation for future research
on training, inference, and architectural design for scalable diffusion language modeling.

2 Preliminaries

Let x = (x1, . . . , xL) denote a sequence of L tokens drawn from a vocabulary V. We write x<j =
(x1, . . . , xj−1) for the prefix up to position j −1. The vocabulary V includes a designated [MASK] token used
in masked diffusion training.

Autoregressive models. Autoregressive (AR) language models predict each token given its left context. The
training objective is the standard next-token prediction loss L(θ) = −Ex

[∑L
j=1 log pθ(xj | x<j)

]
, corre-

sponding to a left-to-right factorization of the sequence probability.

Masked diffusion language models. We focus on masked diffusion language models, a form of discrete diffusion
that uses an absorbing transition kernel. Recently, masked diffusion has proven to be an effective formulation
among diffusion-based language modeling approaches (Amin et al., 2025). Masked diffusion language models
(MDLMs) treat generation as iterative denoising. At each step, a random subset of tokens is masked, and

2



the model is trained to predict them given the unmasked tokens. The training objective can be written as:

L(θ) = −Et,x0,xt

[
1
t

L∑
i=1

1[xi
t = [MASK]] log pθ(xi

0 | xt)
]

. (1)

Here, x0 is the clean sequence, xt the corrupted sequence at step t, and the indicator 1[xi
t = [MASK]] selects

the masked positions to be predicted.

Connection. AR models learn from a single fixed ordering (left-to-right), while MDLMs are trained over
a distribution of random orderings. This motivates adapting pretrained AR models into MDLMs through
continual pretraining.

Continual pretraining. We now define the continual pretraining objective that adapts an AR model into a
masked diffusion language model. The continual pretraining loss applies a right-shifted next-token prediction
rule: token xi

0 is predicted only if the next token xi+1
t was masked in the corrupted sequence. Formally,

LA2D(θ) = −Et,x0,xt

[
1
t

L−1∑
i=1

1
[
xi+1

t = [MASK]
]

log pθ

(
xi

0 | xt

)]
. (2)

This objective is identical in form to the MDLM denoising loss.

3 Simple Continual Pretraining (SCP) for A2D conversion

We obtain diffusion language models (DLMs) beyond 8B parameters with a simple, scalable, single-stage
continual pretraining recipe. Our approach begins from an AR model and transitions directly to DLM
training, avoiding additional stages such as attention annealing. Central to our approach is the adaptation
of training science techniques (e.g., critical batch size analysis, layer-specific learning rates) to bring DLM
training recipes closer in sophistication to those developed for AR models.

To address the first challenge—endowing DLMs with bidirectional context during A2D conversion—we com-
pare A2D recipes and examine their training dynamics.

3.1 Experiment Setup

Datasets, evaluation, and AR base model. We train on FineWeb-Edu (Lozhkov et al., 2024) and report accuracy
on ARC-Easy (ARC-E), ARC-Challenge (ARC-C) (Clark et al., 2018), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), and PiQA (Bisk et al., 2020). We conduct experiments at the 4B-
parameter scale, using Qwen3-4B (Bai et al., 2023) as the AR base model for A2D conversion.

Training settings. We use a global batch size of 2M tokens and train models using AdamW (Loshchilov &
Hutter, 2017). The learning rate follows linear warmup for 2% of training and then remains constant at a
peak value of 3e-4. We apply weight decay of 1e-4 and train models for 20B tokens.

3.2 Bidirectional Context for A2D conversion

We compare three strategies to equip an AR model with bidirectional context for A2D conversion:

1. Random initialization: Train a DLM from scratch.

2. Grafting: Starting from an AR model, train a causal DLM (causal mask) using limited data, graft
bidirectional MHA operators following Chandrasegaran et al. (2025), then continue pretraining.

3. Simple Continual Pretraining (SCP): Starting from an AR model, set the attention mask to bidi-
rectional at initialization, then continue pretraining with learning rate warmup.
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Results. At initialization (0B tokens), the random model has the highest training loss; grafting starts with
a lower training loss than SCP because it has already undergone DLM training; SCP begins between the
two. After 20B tokens, the random model exhibits higher training loss, whereas grafting and SCP exhibit
comparable training losses and similar accuracy on five benchmarks. Since grafting and SCP yield similar
performance at 20B tokens, and grafting requires causal-DLM pretraining and operator-replacement steps,
we adopt SCP as our default A2D recipe.

Random Init. Simple Continual Pretraining (SCP) Grafting

Training Tokens

Tr
ai

ni
ng

 L
os

s Arc-e Arc-c Hellaswag Winogrande PiQA

SCP 60.9 36.5 52.2 52.4 65.5

Grafting 61.9 34.4 50.0 52.5 66.3

Tell me a joke. I'm feeling down.\n\n Okay, I need to tell a joke 
to cheer you up. Let me think of a good one . How about this : 
Why don 't skeletons fight each other? Because they don't have 
the guts. That 's a classic pun joke…………………

Conditional generation sample

Common sense/ reasoning Performance

Figure 3.1: Probing A2D recipes at 4B. Setup: Qwen3-4B AR base; 20B FineWeb-Edu tokens; global
batch size: 1024; peak LR: 3×10−4 with 2% warmup (then constant); weight decay: 10−4. 1⃝ Training loss
vs. tokens for Random (from scratch), Grafting (train causal DLM on limited data, graft bidirectional MHA
per Chandrasegaran et al. (2025), then continual training), and SCP (continual training of AR model with
a bidirectional mask from initialization). 2⃝ Zero-shot accuracy on ARC-E/C, HellaSwag, WinoGrande and
PIQA. 3⃝ Conditional generation from the SCP-trained DLM. Key takeaway: At 20B tokens, SCP ≈
Grafting; both outperform from-scratch. Best viewed in color.

3.3 Critical Batch Size (CBS) Estimation for A2D Conversion
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Figure 3.2: Critical batch size via
branched training. Validation loss vs. to-
kens for branches with 1M, 2M, 4M, and
8M token batches, with learning-rate scal-
ing η(B) = η0

√
B/B0. Lower is better.

Masked diffusion training provides less supervision per batch
than autoregressive training, since only masked positions con-
tribute to the DLM loss (Nie et al., 2024; Prabhudesai et al.,
2025). Under the standard DLM objective, the expected frac-
tion of supervised tokens per sequence is ≈ 50%. As a result,
batch-size and learning-rate heuristics tuned for AR models do
not necessarily transfer to DLMs.

We estimate the critical batch size (CBS)—the batch size
threshold beyond which greater data parallelism leads to di-
minishing returns characterized by training and validation
loss—using branched training (McCandlish et al., 2018; Merrill
et al., 2025).

Experimental settings. We start from a checkpoint that was
trained for 60B tokens with the SCP recipe described above,
using Qwen3-4B as the AR base model, and branch training
into four runs that differ only in the effective global batch size
B ∈ {1M, 2M, 4M, 8M} tokens. We accordingly scale learning
rate as η(B) = η0

√
B
B0

, keep optimizer hyperparameters and weight decay fixed, and align warmup (1%)
and decay in token space across branches. Each branch trains for a constant budget of 5B tokens.

Result. Final DLM loss decreases monotonically with increasing effective batch size, indicating that the CBS
lies beyond 8M tokens and DLMs tolerate larger batches during A2D conversion.
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4 Scaling Diffusion Language Models using SCP with Sparse Mixture-of-Experts

Given that the goal of this work is to scale Diffusion Language Models using A2D recipes, we extend our
SCP recipe to a 30B-parameter sparse Mixture-of-Experts DLM.

4.1 Experimental setup

Training Tokens
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 A
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ac
y

Setting 1 Setting 2
Setting 3 Setting 4

Figure 4.1: AR Knowledge Retention during
A2D conversion. We report GSM-8k accuracy for
four settings under 30B, 60B, and 120B token bud-
gets. Setting 1: peak lr = 3 × 10−4, wd = 1 × 10−4;
Setting 2: peak lr = 3 × 10−4, wd = 1 × 10−1;
Setting 3: peak lr for attention = 3 × 10−4, non-
attention = 1 × 10−6, wd = 1 × 10−1; Setting
4: peak lr for attention = 3 × 10−4, non-attention
= 1 × 10−8, wd = 1 × 10−1.

Pretraining data and AR base model. We scale the SPC
recipe to a sparse Mixture-of-Experts model with a
total capacity of 30B parameters. We use Qwen3-
30B-A3B (Yang et al., 2025) as the AR base model.
Pretraining uses a 500B token mixture comprising
Dolmino Text (general web/text), FLAN (instruction-
style sources, including a focused FLAN subset),
Dolmino Math, StackExchange, and Wikipedia.

Training settings. We use a global batch size of 33.5M
tokens and train models using AdamW (Loshchilov &
Hutter, 2017).

Benchmark evaluation. We assess model performance
on a range of benchmarks spanning general reason-
ing, math and STEM, and coding domains. For gen-
eral reasoning, we evaluate on MMLU (Hendrycks
et al., 2021) (5-shot), MMLU-redux (Gema et al.,
2025) (5-shot), BBH (Suzgun et al., 2023) (3-shot,
CoT), Arc-c and RACE. For math and STEM, we in-
clude GSM8K (Cobbe et al., 2021) (4-shot, CoT). For
coding, we report results on MBPP (0-shot) (Austin
et al., 2021b).

4.2 AR Knowledge Retention during A2D Conversion

AR models are trained on trillions of tokens and en-
code broad world knowledge; a key question is how to
preserve this knowledge during A2D conversion? In particular, we note that recent works have shown that
knowledge (esp. factual associations) is encoded primarily in the MLP/FFN layers in transformer models
(Meng et al., 2022; Dai et al., 2022). We therefore evaluate SCP’s ability to retain pretrained knowledge by
tracking GSM8K accuracy at 30B, 60B, and 120B tokens during conversion under four learning settings.
All settings update all parameters and use 2% warmup; they differ only in weight decay and in how peak
learning rates are assigned to parameter groups (attention vs. non-attention).

• Setting 1: single peak LR, low weight decay.
Peak lr 3 × 10−4 for all parameters; weight decay 1 × 10−4.
Observation: GSM8K decreases monotonically from 60B→120B→180B, indicating forgetting under un-
constrained adaptation.

• Setting 2: single peak LR, high weight decay.
Peak lr 3 × 10−4 for all parameters; weight decay 0.1.
Observation: The decline is less pronounced than in Setting 1, suggesting stronger regularization reduces
forgetting, though degradation remains.

• Setting 3: separate peak LRs by parameter group, high weight decay.
Peak lr 1 × 10−4 for attention parameters; peak LR 1 × 10−6 for non-attention parameters (FFNs,
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Table 4.1: Benchmark results. Best DLM results per row are in bold. ∗ indicates reproduced results.

RND1-Base Dream 7B LLaDA 8B Qwen3-30B-A3B
Architecture MoE Dense Dense MoE
Type DLM DLM DLM AR
Training Tokens 0.5T 0.5T 2.3T >30T
Total Parameters 30B 7B 8B 30B
Activated Params 3B 7B 8B 3B

General Tasks
MMLU 69.6 69.5 65.9 79.5∗

MMLU-Redux 72.6 - - 81.2
BBH 67.5 57.9 47.4 81.5
ARC-C 63.2 59.8 47.5 55.7∗

RACE 57.6 44.7 38.7 40.2
Math & STEM

GSM8K 80.0 77.2 70.9 85.2∗

Coding
MBPP 65.4 56.2 39.0 74.2∗

embeddings, norms, routers); weight decay 0.1.
Observation: Forgetting is small, but overall learning is slow.

• Setting 4: separate peak LRs by parameter group, high weight decay.
Peak lr 3 × 10−4 for attention parameters; peak LR 1 × 10−8 for non-attention parameters; weight decay
0.1.
Observation: Retention is strong (no systematic degradation across 60B/120B/180B).

Update to the SCP recipe. We adopt Setting 4 as the default for RND1-Base: assign separate peak learning
rates to parameter groups—higher for attention, near-zero for non-attention—with weight decay 0.1 across
the model. This preserves autoregressive knowledge during A2D conversion at scale.

4.3 Results

We report comprehensive results for RND1-Base in Tab. 4.1. Unless stated otherwise, decoding and prompt-
ing follow the standard protocols for each benchmark (few-shot counts and CoT usage as listed in the eval-
uation suite), and scores are reported as accuracy (%). We include three comparisons: (i) the AR baseline,
(ii) the RND1-Base (Ours), (iii) Dream7B-Base and (iv) LLaDA-8B Base. As one can observe, RND1-Base
outperforms all prior DLMs in all 10 benchmarks.

4.4 Infrastructure

RND1-Base was trained on a cluster comprising 64 NVIDIA HGX B200 GPUs (8 GPUs per node, 8 nodes
total). Within each node, GPUs are interconnected via NVLink and NVSwitch; cross-node communication
is provided by InfiniBand.

Profiling We performed targeted profiling of a baseline autoregressive Qwen3-30B-A3B (Yang et al., 2025)
model to optimize throughput for our experimental runs.

Since model size permitted sharding intranode only, we considered only tensor parallel (TP) sharding in
non-MoE layers and expert parallel (EP) in MoE layers. This also enabled us to extrapolate our profiling
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measurements on a single node to a multi-node setting, since increasing the number of nodes translated one-
to-one to higher data parallelism, which with a concomitant increase in global batch size, kept computation
per GPU relatively constant. Given the relatively small aspect ratios of model weights, tensor parallel
resulted in consistently lower throughput when combined with expert parallel, with an EP-only configuration
the highest in throughput.

For MoE communication, we benchmarked Megatron’s native all-to-all against DeepEP. By tuning the
latter specifically for the intranode (NVLink) domain, we achieved a boost of +50 TFLOPs.

Too small or large a micro batch size (MBS) resulted in low throughput, due to insufficient computation /
communication overlap at one end and memory pressure at the other end. We found an MBS of 8 to 16,
with memory-intensive ops checkpointed (layernorms and MoE activations), to be a sweet spot.

WS TP PP EP DP MBS GBS Seq GAS Dispatcher Recompute TFLOPs Mem (GB)

8 1 1 8 8 8 2048 2048 32 DeepEP Selective 454.0 173.3
8 1 1 8 8 8 2048 2048 32 A2A Selective 391.6 170.2
8 1 1 8 8 16 2048 2048 16 DeepEP None 378.8 109.7
8 1 1 8 8 16 2048 2048 16 A2A None 331.0 104.6

Table 4.2: Profiling configurations for Qwen3-30B-A3B. WS = world size, TP = tensor parallel, PP = pipeline
parallel, EP = expert parallel, DP = data parallel, MBS = micro batch size, GBS = global batch size, Seq =
sequence length, GAS = gradient accumulation steps.

5 Conclusion

We release RND1-Base, A2D recipes, and inference code to catalyze progress in post-training, inference, and
architectural innovation for scalable diffusion language modeling.
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