Sliding Window Recurrences for Sequence Models

Radical Numerics Inc.
Abstract

Multi-hybrid architectures are poised to take over language modeling due to better quality and perfor-
mance. We introduce a hierarchical decomposition framework for linear recurrences that allows us to
develop algorithms aligned with GPU memory hierarchies, yielding Sliding Window Recurrences. We fo-
cus specifically on truncating recurrences to hardware-aligned windows which are naturally jagged, limiting
costly inter-warp communication. Using SWR, we develop Phalanx layers that serve as drop-in replacements
for windowed attention or linear recurrences. In 1B parameter multi-hybrid models, Phalanx achieves over
10-40% speedup across 4K to 32K context length over optimized Transformers while matching perplexity.

Code: https://github.com/radicalnumerics/spear
Correspondence: research@radicalnumerics.ai
Date: October 14, 2025

1 Introduction

Several sub-quadratic token-mixing primitives deliver high quality in language modeling when combined with
Attention, in so-called hybrid models. Some methods achieve efficiency by limiting token-mixing to nearby
tokens, such as sliding-window attention (SWA)(Beltagy et al., 2020; Agarwal et al., 2025) and gated short
convolutions (Ku et al., 2025; Thomas et al., 2024; Chandrasegaran et al., 2025). Meanwhile, others are
designed to capture global token interactions such as linear recurrences (Yang et al., 2023; Gu & Dao, 2023;
Yang et al., 2024; Arora et al., 2024; Zhang et al., 2024) or gated long convolutions (Poli et al., 2023; Massaroli
et al., 2023). The resulting transfer operator (the surrogate attention matrix) is typically dense but highly

Sliding Window Attention Linear Recurrence Sliding Window Recurrence

Figure 1.1: Sliding Window Recurrences (SWR): A new class of primitives for hardware-aligned sequence
mixing. (Left) sliding window attention. (Middle) Full linear recurrence with exponentially decaying bands. (Right)
sliding window recurrence (ours) with jagged window structure, computed efficiently via the proposed Block Two-Pass
(B2P) algorithm. This jagged structure naturally aligns with GPU memory hierarchies, enabling the Phalanx layer
to achieve higher end-to-end training throughput while preserving quality at scale.

https://github.com/radicalnumerics/spear

structured with decay so that token interactions have exponentially diminishing effect with longer distance,
while accruing greater computational cost due to data movement across the GPU memory hierarchy.

In light of the strong quality of hybrids and the central role of data movement on modern GPUs, we ask
whether it is possible to retain modeling quality while making hardware-aligned data locality a key operator
design axis. Our answer are windowed recurrences, realized by algorithms that map well onto the GPU
memory hierarchy. Concretely, we contribute:

Sliding Window Recurrences. We introduce sliding window recurrences (SWRs) in Section 4, a family of
truncated sequence mixer primitives that makes hardware-aligned data locality an explicit design axis. In
practical SWRs, the window is jagged rather than uniform (Figure 1.1) to be efficiently realized on GPUs.

Kernels and numerics. We implement SWRs with a block-two-pass (B2P) algorithm and kernel that avoids
thread-block carry chains (Section 4.2.1). Each warp fuses its local computation into high-throughput
GEMMSs, and a single device-wide parallel rank-1 update broadcasts the residual needed by the next warp.
In the causal setting, communication happens only with the immediately preceding warp; the top-level
transfer becomes diagonal, achieving logical depth 1 with one thread-block synchronization. We cast scan
algorithms as matriz factorizations of the transfer operator, exposing flat vs. hierarchical decompositions
that map one-to-one onto GPU hierarchy. We adopt an aggressive truncation with block size of 16 to match
warp size on GPU, maximizing efficiency while still retaining downstream language modeling performance.
This band is 8 times shorter than modern variants of SWA (Agarwal et al., 2025).

Phalanx layer for hybrid architectures. We introduce Phalanx, a new layer for short-range token mixing using
SWRs in Section 5. Phalanx—Attention hybrid models preserve the quality of SWA /Attention hybrids while
training 10-24% faster at 8K context length. The Phalanx hybrid is also the fastest at short lengths like
4K, improving end-to-end training throughput by over 10% over compared to Attention on Hopper GPUs.

2 Related Work

Local attention and convolutional mixers. Local attention restricts receptive fields to improve arithmetic inten-
sity and locality. Examples include sliding window attention (Beltagy et al., 2020; Agarwal et al., 2025).
Complementary convolutional approaches (including implicit convolutions) likewise emphasize local compu-
tation with strong scaling (Romero et al., 2021; Poli et al., 2023; Ku et al., 2025). Our work shares the
emphasis on locality but differs by explicitly band-limiting inter-tile transfer via a recurrence matched to the
GPU hierarchy.

Linear recurrences, SSMs, and semiseparable structure. Recurrence-based layers such as GLA, Mamba, and
Gated DeltaNet (Yang et al., 2023; Gu & Dao, 2023; Yang et al., 2024) realize transfer operators that
are sequentially semiseparable, yielding exponentially decaying off-diagonal bands. This both motivates our
finite-precision horizon and informs our band-limited design. Connections between SSMs and attention via
structured matrices further clarify algorithmic trade-offs and hardware mapping (Dao & Gu, 2024).

Hybrid architectures, and hardware-aware design. Hybrid architectures (e.g., mixing attention with local oper-
ators) achieve the best scaling rates (Poli et al., 2024; Wang et al., 2025b). One common option is sliding
window attention paired with global attention (Brown et al., 2020; Agarwal et al., 2025) or linear attention
(Arora et al., 2024). Modern approaches to hybridization employ a multi-hybrid stack of operators with
multiple window sizes (Ku et al., 2025). Phalanx fits this direction as a local specialist that delegates global
routing to attention.

Parallel scan and GPU implementations. Parallel scan underpins fast recurrences. Classic formulations cite
Blelloch’s prefix-sum (Blelloch, 1990) and the asymptotically efficient Brent-Kung (BK) algorithm (Brent
& Kung, 1982). However, BK is flat, while GPUs are hierarchical; high-performance libraries (CUB/NCCL)
implement hierarchical scans and incorporate the decoupled look-back strategy to hide inter-block latency
(Merrill & Garland, 2016). SWR embraces hierarchy explicitly: at the highest indexing level, the transfer is

diagonal (logical depth 1), requiring only a single thread-block synchronization with strictly local inter-warp
communication. Jagged composition of attention and linear attention is discussed in Zhang et al. (2024).

3 A Matrix Theory of Linear Recurrences

We analyze the algebraic structure of first-order linear recurrences, a fundamental computational primitive
for signal processing and deep learning alike. Our objective is to develop a matrix-based representation of
the operator that maps an input sequence to the corresponding state sequence. This algebraic framework is
the foundation for a systematic understanding of the system’s dependency structure and for the principled
derivation of computational algorithms. Building on this representation, we discuss two complementary
algorithmic families. First, flat matrix-factorization methods (Section 3.1) factor the transfer operator into
logarithmically many sparse factors, yielding parallel algorithms such as Kogge-Stone or Brent-Kung scans.
Second, hierarchical block algorithms (Section 3.2) tile the sequence, compress inter-block coupling to a
scalar carrier (rank-one off-diagonals), and split computation into parallel local solves and a coarse global re-
currence; this design matches memory hierarchies and admits efficient matrix-multiplication implementations
via numerically stable log-space materialization.

Flat vs. hierarchical algorithms. The categorization of fast matrix multiplication algorithms into flat
and hierarchical is essential in modern high-performance computing. This distinction addresses the
widening gap between computational throughput and the cost of data movement. As architectures
increasingly rely on deep memory hierarchies (e.g., GPUs), algorithms must be evaluated not just by
arithmetic complexity, but by their communication patterns and data locality.

Professor David Keyes discusses the foundations for a hardware-centric taxonomy of matrix algo-
rithms:

Two universes of computational linear algebra exist today side-by-side, a flat, se-
quential universe in which algorithms are simply stated with loops over global address
spaces that typically process a row or a column at a time and another universe in
which algorithms are restated for performance in ways that exploit hierarchy, with
loops over local ranges only at each hierarchical level. (Keyes et al., 2020)

Flat algorithms achieve efficiency, typically O(nlogn) work, through a factorization of a matrix M
into a (short) sequence of sparse factors:

M=F,F,_, --F

where the depth m = O(logn), and each factor Fj contains at most O(n) non-zero entries. These
algorithms are flat because their data dependency structure often spans the entire input domain.
The sparsity pattern involves long-range connections (e.g., the FFT butterfly network), necessitating
global scattering or gathering of information. This fails to exploit data locality and often renders the
algorithm communication-bound.

Hierarchical algorithms exploit locality by organizing computation to respect data locality. They
separate interactions into strong local components and weaker (or smoother) global components that
can be efficiently compressed. The fundamental building block is the two-level decomposition. Let
n = (b, where £ is the block size and b is the number of blocks:

M =D, +U S5,V
This structure separates the computation:

e D, is a block-diagonal matrix. Computation is entirely local to input chunks, maximizing
data reuse in fast memory (near field).

o U S, V{! is a data-sparse (numerically low-rank) representation of global interactions between
blocks (far field).

A fully hierarchical algorithm (e.g., FMM, H-matrices) applies this concept recursively to the inter-
action matrix S7, creating a tree structure for computation.

Feature Flat Algorithms Hierarchical Algorithms

Algebraic Structure sequence of sparse factors recursive low-rank block decomposition
Data Locality low; global access patterns high; maximizes local computation
Communication global synchronization/shuffling structured, hierarchical; reduced volume
Arithmetic Intensity often lower; memory-bound higher; high compute-to-memory ratio

The input-to-state map of a scalar linear recurrence is defined by:
T =i +ui, 1€ [n):={1...,n} (1)

with state z; € R, input u; € R, and coefficient a; € R, and initial condition zy € R. Our first analysis
of such dynamics is purely algebraic and assumes exact arithmetic, holding for any sequence of coefficients
without regard to numerical and analytical stability.

The global behavior of system (1) can be captured by the action of a linear operator L € R™*™ on the input
sequence. Let z = (z1,...,2,) and let u = (u1 + a1xo, ua, ..., u,) so that the initial state is folded into
the first input. We write (p, q) for vertical concatenation, i.e., (p,q) = [p'",q"]". Let A = diag(ai,...,a,)
be the diagonal matrix of coefficients, and let Z be the down-shift operator (Z;; = d; j4+1). The recurrence
is equivalent to the vector equation © = A(Zx) + u, i.e. the state is the solution of the linear system:

(I-AZ)x =u. (2)

The operator I — AZ is unit lower-triangular and therefore always invertible. The solution is = Lu, where
we define the system’s transfer operator as L := (I — AZ)™L.

The structure of this operator is revealed through its Neumann series. The matrix AZ is strictly lower-
triangular and thus nilpotent, with (AZ)" = 0. Consequently, the series expansion for the inverse becomes
a finite sum:

L=I1+AZ+(AZ)?+ - -+ (AZ)" L (3)

Each term (AZ)* in this expansion represents the propagation of influence forward by exactly k steps. A
direct computation (see Appendix A) shows that (AZ)* is supported on its k-th sub-diagonal, with entries
[(AZ)"“']“._k = a;Q;—1 - Gj—k+1. 1o write this compactly, we define the product a;; := a;a;—1---a; for
i>3 and adopt the convention that an empty product is 1 while if ¢ < j we have a;.;; = 0. The entries of
(AZ)F are thus a;.;_jy1.

Summing the series yields the entries of the transfer operator. The entry L;; = a;.j4+1 captures the influence
of input u; on state x;, which is non-zero only if ¢ > j. This gives the operator its characteristic unit
lower-triangular form, depicted in Figure 3.1.

Sequentially Semi-Separable Matrices. While dense, matrices of the type (3) possess a rich internal
structure amenable to factorization, which is key to designing efficient algorithms. Commonly referred
to as sequentially semi-separable matrices, they have been a long-time favorite of linear algebra
and signal processing literature (in both finite and infinite dimensions). First introduced to study
time-varying linear systems (Gohberg et al., 1992; Dewilde & Van der Veen, 1998), their properties
have been extensively studied both theoretically (Vandebril et al., 2008; Dewilde & van der Veen,
2014; Dewilde et al., 2025) and computationally (Chandrasekaran et al., 2005). For practical-minded
machine learning readers, Dao & Gu (2024) provide an excellent overview of the literature.

I-AZ (I-AZ)"!

Figure 3.1: Side-by-side visualization of I — AZ and its Neumann-series inverse (I — AZ) ™! for n = 16. Subdiagonals
are colored by row index with opacity proportional to magnitude.

3.1 Matrix Factorizations and Flat Algorithms

A key contribution of our work is establishing a precise correspondence between classical parallel algorithms
and sparse matrix factorizations—a connection that has been surprisingly underexplored despite its funda-
mental nature. We show that the transfer operator L admits a factorization into exactly log,(n) sparse
factors, directly mirroring the computational structure of parallel prefix scan algorithms. This insight trans-
forms what appears to be a purely algebraic manipulation into a principled algorithmic framework.

The simplest factorization emerges naturally from the binary expansion of the geometric series (3), reveal-
ing that the Kogge-Stone parallel scan algorithm (Kogge & Stone, 2009) is not merely analogous to, but
fundamentally is, a matrix factorization scheme. Assuming n to be an integer power of two (enforceable by
zero-padding u if needed), n = 2™ for some m € N, we have

L= Y (Az) = [[(I+(A2)), (1)
k=0 t=0

where extra terms beyond k& = m — 1 vanish by nilpotency'. Full derivation is provided in Appendix B.
Figure 3.2 illustrates the sparsity structure of each factor in this decomposition.

This factorization immediately yields the Kogge-Stone parallel algorithm with logarithmic depth. Each factor
I+ (AZ)2) in the product can be applied to the input vector u through the recursive doubling scheme:

v v+ Fv, F+« F? (5)

initialized with v = w and F = AZ. At stage t, we have F = (AZ)Qt. The efficiency of the algorithm
stems the logarithmic depth combined with maintaining sparsity throughout: at each stage t, the matrix F

I+ (AZ)! I+ (AZ)? I+ (AZ)* I+(AZ)®

Figure 3.2: Kogge-Stone factorization of L for n = 16: the four sparse factors I + (AZ)Qt for t ={0,1,2,3}. Each
matrix has ones on the main diagonal (gray) and a single subdiagonal at offset 2° representing (AZ)Qt.

1The product sign applied to matrices is defined as the left matrix product, i.e., H?:l A, =An---A2A;q.

remains a shifted diagonal supported on the 2!-th sub-diagonal, which we represent as F = diag(f) Z% . The
squaring operation F' < F?2 can be computed implicitly through element-wise operations on the diagonal
vector f, as detailed in the box below. This yields Algorithm 1, which implements the Kogge-Stone parallel
prefix scan in our matrix formulation.

Implicit matriz squaring. Let k = 2¢. We define the shift operation on a vector f such that
shift(f, k), = fi—r for i« > k and 0 otherwise. The derivation relies on the following commutation
identity between the shift operator and a diagonal matrix:

Z%diag(f) = diag(shift(f, k))Z".
Using this identity, the squaring step becomes:
F? = (diag(f)2*)?
— diag(/) (2* diag(/)) 2*
— diag(f) (diag(shift(f, 2t))zf) z¥
_ diag(f © shift (£, 2f))z2t“,

where ® is the Hadamard product. This provides an efficient update for the vector f.

Algorithm 1 Kogge-Stone Parallel Algorithm

Require: n € N, sequences (a;)7q, (u;)?; with u; < v + a1z already folded

Ensure: (z;)7_; where z; = Y77 (a;;) u;

1 v (Ug, .,)" > work vector
2 f+(a,...,a,)"; s+ 1 > F = diag(f) Z°
3: while s <n—1do > stages t =0,..., [logyn] —1
4: for alli € {s+1,...,n} do > apply v < v + Fv in parallel
5: Vi v fi v

6: end for

7 for alli € {s+1,...,n} do > square F: f < f @ shift(f,s) in parallel
8: Ji fir fis

9: end for

10: 54— 2s

11: end while

12: return z < v

Algorithm 1 presents the Kogge-Stone variant, which achieves optimal O(logn) depth but performs O(nlogn)
total work. The matrix factorization perspective naturally extends to other parallel prefix algorithms: the
Brent-Kung algorithm, for instance, corresponds to a different factorization that trades increased depth
for work-efficiency, achieving O(n) work with O(logn) depth through a two-phase (upsweep-downsweep)
structure. We leave the proof as an exercise to the reader.

Scan algorithms in deep learning. Parallel scans have been widely used to parallelize linear recurrences
over sequence length (Martin & Cundy, 2017; Smith et al., 2022; Gu & Dao, 2023). The typical
recipe is: (1) define the associative binary operator o : R? x R? — R? corresponding to the recurrence
(Blelloch, 1990), (v/, f') o (v, f) = (v' 4+ f'v, f'f); and (2) invoke a high-performance scan from
standard libraries (e.g., cub: :DeviceScan) (Merrill & Garland, 2016). On modern GPUs, optimized
scans are memory-bandwidth limited and, for long sequences, reach throughput comparable to memcpy
(Merrill & Garland, 2016; Harris et al., 2007), motivating algorithms that better match the hardware
hierarchy.

(]) | @][]
I F3; I Fso I L3
Ol]] |]

Fyq IF42 IF43 I Ly

Figure 3.3: Block decomposition of the transfer operator showing diagonal blocks L; = tril(g:g; ') (lower triangular,
capturing intra-block dependencies) and off-diagonal blocks Fi, = giBesry (rank-one factorization, mediating inter-
block carrier propagation). The scalar B;s represents the compound attenuation between blocks.

Despite optimal O(logn) depth, flat factorizations impose global communication patterns that are
bandwidth-bound on hierarchical hardware. We therefore reorganize the same operator around locality:
partition the sequence into blocks, solve intra-block recurrences in parallel, and couple blocks only through
a scalar carrier governed by a coarse recurrence, leading to the hierarchical formulation below.

3.2 Hierachical Decomposition and Algorithms

On hierarchical hardware—registers, caches, and memory arranged by increasing capacity and decreasing
bandwidth—such sweeps squander locality. Effective algorithms design practice mirrors the memory hier-
archy: partition the sequence into blocks and organize computation so that data remains near where it is
produced.

We fix a block size £ € N and assume, for simplicity, that n = b - £ for some b € N. We introduce a bijection
¢ : [b] x [¢{] = [n] mapping the block index ¢ and local index j to the global index i via ¢(¢,5) :=£(t — 1)+ j
(essentially, row-major enumeration). This bijection allows us to segment any sequence (qi,...,qn). We
denote the local components as g; ; := qg(,;) and the block subvectors as q; := (qy,1,- - ., qt,g)T € Rf. We
apply this notation specifically to the coefficients a, the input u, and the state x. We also adapt the notation
for contiguous products to this block structure. Within a block ¢, we write ayk.; 1= ar@yr—1---a;; for
k > j, with the empty product (e.g., when j = k + 1) defined as unity.

3.2.1 Tiling the Transfer Operator

Under this partitioning, the transfer operator L naturally decomposes into a b x b block matrix, revealing
the dependency structure between different blocks.

Theorem 3.1 (Block structure). The transfer operator L admits a block lower triangular representation

L,
F,, L,

L— |F31 F32 Ls 7 (6)
F,i Fy - F L

where each diagonal block Ly € R** is unit lower triangular, and each off-diagonal block F,, c REXE for
t > s has rank at most one.

The global system x = Lu thus decomposes into coupled equations for the state chunks:

t—1

ry = Ltut + Z qus. (7)
s=1

The term L;u; represents the intra-block dynamics—the evolution of the state within block ¢ driven solely
by the local inputs u; and coefficients a;. The summation term captures the inter-block dynamics—the cu-
mulative influence of all preceding blocks on the current block ¢. The intra-block terms L;u; are independent
and can be parallelized. The overall computational efficiency, however, hinges on effectively resolving the
inter-block dependencies without explicitly computing materializing and multiplying the off-diagonal blocks.

Intra-block dynamics. The diagonal blocks L; govern the intra-block dynamics. They characterize the evo-
lution of the system within block ¢ assuming a zero initial state entering the block. When considering the
relationship between an input and a state where both indices fall within the same block ¢, the transfer
mechanism depends exclusively on the coefficients associated with that block.

Specifically, if we map global indices to local indices (k,m), the entries are [Ly]k,m = Qi k:m+1 for k > m,
and 1 for k¥ = m. This structure is identical to the global transfer operator, but localized. If we define the
local coefficient matrix A, = diag(at 1, ..., a.r) and denote the £ x ¢ down-shift operator by Z,, the local
transfer operator L; can be compactly expressed as:

L= (I, - A Z,)™ " (8)

Inter-block dynamics. Information flowing from blocks 1 through ¢ — 1 into block ¢ must pass through a single
scalar—the state x,;_1) at the block boundary. This bottleneck, which we call the carrier s;—1 1= xy;_1) =
x1_1,0, compresses and mediates all inter-block dependencies and enables a hierarchical reformulation of
inference algorithms.

Consider the state evolution within block ¢. For all k € [¢], the state @) can be expressed relative to the

block entry point:
k

Ttk = Q¢ k:15t—1 T Zat,k:jJrlut,j- 9)
j=1
The first term propagates the incoming carrier through products ayj.;, while the second captures local
dynamics—precisely the k-th component of L;u;. Collecting these propagation factors into a vector g; :=
(a1,@,2:1,--.,a401), we obtain the block state equation:

Ty = Liyus + ges¢—1. (10)

The carrier itself evolves recurrently through the blocks —a linear recurrence governing blocks of linear
recurrences. Extracting the final state s, = e, @; and substituting (10):

St = CctSt—1 + TtTut, (11)

where c¢; := ay .1 is the block’s compound attenuation and rtT = eZLt reads out the local contribution.

The carrier system inherits the algebraic structure of the original problem but operates at a coarser temporal
resolution. This self-similarity allows us to apply the transfer operator formalism at this higher level as well.

Let s = (s1,...,5p) be the vector of carriers and v = (vy, ..., vp) be the vector of effective inputs, v; = 7,/ u;.
The carrier dynamics can be written in matrix form as s = CZys + v, where C = diag(cy,...,¢) is the
diagonal matrix of block attenuations and Zj is the b x b down-shift operator.

Consequently, the carrier transfer operator T' € R**?, which resolves the inter-block dependencies via s = Tv,
is given by
T=(I,-CZ,) " (12)

Low-rank factorization of the off-diagonal blocks. The constraint that the inter-block coupling must
channel through the scalar carrier manifests as rank-one structure in the off-diagonal blocks.

Theorem 3.2 (Low-rank Structure). The off-diagonal blocks admit the factorization
Ft,s = gtﬁt,sr;rv (13)

where By s = cs41 - ci—1 compounds the block attenuations.

Proof. The matrix and recurrence views must agree:

t—1
Z Ft,sus = gtSt—1- (14)
s=1

Solving the carrier recurrence from sy = 0 yields

t—1 t—1
St—1 = Zﬁt,svs = Zﬁt,s(rg—us)- (15)
s=1 s=1

Hence, we have
t—1 t—1
-
g Ft,sus =gt § ﬁt,s(rs uS)
s=1 s=1

=1l

= (gtﬁtﬂsr;)u&
1

S

The factorization F s = gtﬂt,srz encodes the complete information flow: r5 extracts the carrier from
block s, B; s attenuates it through intermediate blocks, and g; broadcasts it into block ¢.

These relations organize the computation into a two-level hierarchy: within each block, x; = a; ¢ k-1 +
uy), with boundary condition @ ; = s;_1; across blocks, the carrier evolves as s; = @t ¢.15t—1 —|—7'tTut (s1 =0).

Collecting the pieces, equations (10)—(11) show that inter-block influence is mediated entirely by the scalar
carrier, and Theorem 3.2 expresses each off-diagonal tile as a rank-one map. Bundling these ingredients yields
a hierarchical decomposition of the transfer operator (Figure 3.4). Introduce the block-diagonal aggregations
L :=diag(Ly,..., L), G := diag(g1,...,gs), and R := diag(r],...,r]), and let T = (I, — CZ;)~! be the
carrier transfer operator.

Theorem 3.3 (Hierarchical Decomposition). With the notation above, the global transfer operator admits
the exact decomposition

L=L + GZ,TR. (17)

Proof. The (t, s) block equals L; when t = s (from L£). For t > s, the second term contributes g;[Z,T]; s 7 =
9: ;157 . Since T = (I, — CZ,)~ ! resolves the carrier recurrence (11), we have T;_1 s = f3;.5, yielding

F,, = gtﬁt,sr;—. The first term collects intra-block solves; the second routes carriers across blocks. O

3.2.2 From Factorization to Computation

The hierarchical factorization (17), translates directly into a structured, parallel algorithm for evaluating
the linear recurrence (Algorithm 2). Each algebraic term maps precisely to a computational phase: the
block-diagonal £ corresponds to parallel local solves (Stage I); the carrier transfer operator T' drives global
propagation (Stage IT); and the rank-one factors G and R mediate the communication between these stages
(Stage I extraction and Stage III reconstruction).

Zy, T R

bxb bxb b x bl

|
|

bl x bl bl x bl bl < b

Figure 3.4: Transfer operator matrix L with its hierarchical factorization £ + GZ,TR. The full matrix exhibits
exponentially decaying entries with darker blue diagonal blocks and lighter blue-gray subdiagonal blocks. The fac-
torization separates local structure £ (navy blue) from inter-block coupling via G (blue-gray, decaying downward),
Zy (gray shift), T' (slate blue-gray), and R (blue-gray, decaying leftward).

This structure is inherently aligned with modern memory hierarchies on AI accelerators. Local blocks are
sized to saturate high-bandwidth cache or shared memory, while the compressed carrier system minimizes
traffic across slower global memory interconnects.

Algorithm 2 HIERARCHICAL BLOCK PARALLEL INFERENCE

Require: Block structure n = b¢, inputs (u;)’_;, coefficients (a;)?_;
Ensure: State sequence (xz;)%_;
STAGE I: LOCAL SOLVES AND INTERFACE EXTRACTION

1: for all ¢ € [b] in parallel do
2: w; < Lyuy > Solve local recurrence
3: gt < [ai1,ai2.1,. .., ai01]" > Propagation factors
4: Vg <= Wy Ct < Gr > Extract interface
5: end for
STAGE II: GLOBAL CARRIER RECURRENCE
6: Form C = diag(cy,...,cp) and v = [vy,...,vp] "
7. 8 (I, — CZy) v > Solve carrier system
STAGE III: RECONSTRUCTION
8 59« 0
9: for all ¢ € [b] in parallel do
10: Ty — Wi+ G1St—1 > Combine local and global
11: end for

Note that the quantities required for Stage II and III are readily available from the local computation in
Stage I. The effective input v; is the final component of the local state w;, v+ = w; . Further, if L; is
materialized, g; corresponds to its first column scaled by a1, g: = a:1L:e1, and ¢; = gt ¢.

Implementation strategies. The abstract recurrences in Algorithm 2 (lines 2 and 7) can be implemented using
different strategies optimized for specific hardware characteristics. While alternatives include sequential
scans (work-optimal but serial) and parallel scans (logarithmic depth but higher work; see Section 3.1), we
focus on the strategy best suited for modern accelerators: matrix multiplication.

This approach materializes the transfer operators (L; locally, T' globally) as dense matrices, transforming
the recurrence solve into a GEMM. While this increases the local work complexity to O(¢?), compared to
the O(¢) work of a sequential scan, it maximizes arithmetic intensity.

10

This strategy is particularly potent when the input w has a feature dimension d (or other parallel dimensions
such as batch size) where the coefficients a are shared. The operation becomes a matrix-matrix multiplica-
tion, and the O(¢?) cost of materializing L, is amortized across the parallel dimensions. This formulation
leverages specialized hardware (e.g., tensor cores), often achieving peak utilization where scan-based methods
remain bandwidth-limited.

While matrix multiplication is typically optimal locally, if the number of blocks b is exceedingly large,
the O(b?) cost of the global stage may be prohibitive. Then, a hybrid approach is viable: using matrix
multiplication locally, and a parallel scan globally to resolve the carrier system in O(blogb) work and O(log b)
depth.

Numerically stable materialization of semi-separable matrices. The matrix multiplication strategy
requires materializing transfer operators whose entries Ly ;; = a; ;41 are products of at most £ — 1
coefficients. One idea is to exploit the identity @y ;:j+1 = @i:1/aq, j:1 for i > j (Vandebril et al., 2008).
Equivalently,

L, = tril(gig; ") (18)

where g{l is intended to denote the reciprocal of gy, g;l = (1/a¢1,1/at2:1,.-.,1/are1). Naively
forming the cumulative products g; and compute their outer ratio is numerically fragile: when co-
efficients are contractive, g, rapidly underflows to zero in low precision formats (e.g., fp16/bf16)
producing indeterminate forms (0/0) even if the ratio g;;/g: ; is representable.
A standard remedy is to work with log-prefix sums p;; = Y., _, loga; s and set

log Lt,ij = Pt,i — Dt,j for i > 7, (19)

i.e., form the outer difference log L; = p;17 — 1p, and mask the upper triangle (set to —o0o). This
avoids explicit g; and only exponentiates differences. However, subtracting large, nearly equal prefixes
near the diagonal can introduce cancellation. Dao (2024) replaces the outer difference by a masked
cumulative sum of the segment itself: tile loga; into a matrix (loga;) ® 1 (repeating each segment
¢ times), zero out the inclusive upper triangle, perform a column-wise cumulative sum, then mask
the strict upper triangle to —oo and exponentiate, avoiding subtractive cancellation. Dao’s log-space
route is particularly natural when the model parameterizes a;; = exp(7y:;) with v ; <0.

In our setting we typically parameterize a;; = o(u;) € (0,1) with a sigmoid (see Section 5); we do
not get the first log “for free.” We therefore introduce a linear-space analogue of Dao’s construction
that avoids subtraction and avoids unnecessary log /exp transforms. Expand a: as a; ® 1, set the
inclusive upper triangle to the multiplicative identity 1, take a column-wise cumulative product, and
finally zero the strict upper triangle.

This achieves the materialization robustly with complexity O(bf?). Zeros in a; propagate correctly
(downstream products become exactly 0). In practice, one could further accumulate in fp32 to extend
dynamic range; empirically, we find the linear-space variant to match the intended semantics more
closely and to be robust at the block sizes we use (see Figure 3.5). Note that the same construction
applies to the global carrier T'. In optimized CUDA implementations, this algorithm is executed by
a single warp, spawning one warp per chunk ¢ of the sequence.

Algorithm 3: DIRECT (LINEAR-SPACE) MATERIALIZATION OF TRANSFER OPERATOR

Require: Coefficients a; € R’
Ensure: Transfer operator L; € R¢*¢

1. A+ a;17 > Tile along columns: A;; = ay;
2t Ajj < 1fori<j > Pre-mask with multiplicative identity
3: P < CumProd (A) > Column-wise cumulative product
4: Ly < tril(P) > Causal lower triangle; strict upper set to 0

11

Numerical correctness of L; tiles materialization (bfloat16)
Forward Backward (da;)

;\-O\ U] U] T T \\\\HI “brtr H\‘ T LR \h TTTTTTT T T T T TTITT] T T 11117
~ e ®{ ‘Tﬁ‘»% 2 , |
5 109 %':/ ;N.,"c g s 10 B "k\ %
= 0% o %Wo BR®" 1 F ’(ﬂ' o o0 §
e o N +4 f b L |
o0 4 y e 1L 9 & o WMo |
I 208 7 B 10° E w \(E
€ s @, ‘!/'f“ - B F - & :]
g 10 & WY - 5 P) @ :
o 1 100 5 9. P9
o 1073 E E <
= E F &
= o B L i
3 —4 @)
£ 10 E 107t | E
[B - =
P | - [1
© 1075‘ I Ll Lol Lol Lol Lol Lol Lol [)
E 10-4 10-3 102 10-1 100 10—4 10-3 102 10-1 10°
decay rate a; = p decay rate a; = p
@ Outer ratio of products Outer difference of sums (log space) direct (log space) direct (lin space)

Figure 3.5: Numerical correctness of L; tiles materialization. For each decay rate p € [10™*, 1], we construct a block
of size £ = 16 with constant decay values a; = p. Each method computes the L matrix in bfloat16 and is compared
against a float64 reference implementation. We report the maximum absolute error normalized by the maximum
magnitude (percentage error) for both the forward pass (left) and backward pass gradient with respect to a; (right).

Complexity and hardware utilization. We focus on the primary strategy utilizing matrix multiplication for both
stages, assuming a parallel feature dimension d. The total computational cost is dominated by the matrix
multiplications. Locally, the cost is O(b(£2d + £?)), where bf2d is the cost of the multiplications and b¢? is
the cost of materialization across all b blocks. Globally, the cost is O(b%d + b?).

While the total FLOP count exceeds the O(nd) cost of a sequential scan by a factor related to ¢ and b, the
arithmetic intensity compensates significantly. For the local stage, the arithmetic intensity scales favorably
with both ¢ and d. This high intensity is the key to achieving high throughput on modern GPUs, enabling
effective utilization of specialized matrix-multiplication hardware. If the global cost dominates due to a very
large b, utilizing a parallel scan globally reduces the global work to O(bdlogb).

Hierarchical algorithms in practice. Dao (2024) implements local solves as matmul kernels that can
target Tensor Cores via wmma on SM90/SM100, using mixed precision (e.g., fp16/bf16 with fp32
accumulation) when heads share coefficients across features; it transitions from matmul to scan for
the global carrier recurrence above a certain number of blocks. By contrast, other designs such as Yang
et al. (2023) or Yang et al. (2024) often favor scan-based local aggregation in full precision, paired
with short-range or sequential carrier propagation; this trades reduced global communication for
extra depth and does not make use of Tensor Cores. Note that even cub: :DeviceScan is hierarchical
(Merrill & Garland, 2016), so practical kernels de facto nest multiple hierarchies. As sequences grow,
the carrier recurrence over b blocks can itself become a bottleneck (motivating parallel scans globally,
or further nesting). Because the carrier system possesses the same algebraic structure as the original
recurrence, it can be recursively block-partitioned and factorized. This multi-level nesting aligns the
computation with deeper hardware hierarchies (e.g., thread blocks, SMs, devices), preserving the
rank-one structure between levels.

While hierarchical algorithms successfully reduce communication volume compared to flat scans and maintain
logarithmic or even constant depth—avoiding the O(n) depth of sequential global propagation—they cannot
eliminate global synchronization entirely. The carrier recurrence, though compressed, still requires commu-
nication across all b blocks. Moreover, this global coupling becomes numerically delicate when ¢; = a; 4.1
approaches machine precision for large block counts.

To achieve truly local computation, we must sacrifice the global range of the recurrence. From a repre-
sentation perspective, this trade-off is well-motivated: stable linear recurrences—the only ones trained in

12

practice—exhibit exponential decay with range, manifesting as rapidly diminishing entries along the sub-
diagonals of the transfer operator. This natural decay suggests that long-range dependencies contribute
negligibly to the solution, making their truncation both theoretically justified and practically benign.

A naive truncation to purely independent blocks would sever all inter-block dependencies, yielding unaccept-
able accuracy. Instead, we pursue a principled middle ground: retaining nearest-neighbor communication
between adjacent blocks while eliminating global synchronization. This is accomplished by early-stopping the
carrier system after its first term—equivalent to approximating T = Ij in our matrix formulation. The re-
sulting operator preserves the first block-subdiagonal, achieving constant O(1) depth, linear O(n) work, and
exclusively local communication patterns. This leads to the Sliding Window Recurrence variants developed
in the next section.

4 Sliding Window Recurrences

The hierarchical algorithms of Section 3.2 achieve substantial reductions in communication volume while
maintaining logarithmic depth. Yet, they do not eliminate the persistent trade-off between algorithmic
depth and parallelizability versus communication efficiency: the scalar carrier recurrence still necessitates
global synchronization across all b blocks, emerging as a scalability bottleneck for increasingly long sequences.

These challenges compel us to reconsider the fundamental trade-off between global context and efficiency. In
stable linear systems—the only ones trained in practice—where |a;| < p < 1, the transfer operator exhibits a
remarkable property: its entries decay exponentially along subdiagonals. Specifically, the influence of input
u; on state x; is bounded by p'~J, vanishing rapidly with temporal lag ¢ — j. This structure suggests that
enforcing global dependencies may be unnecessarily conservative since distant inputs contribute negligibly
to local state evolution.

This insight motivates Sliding Window Recurrences (SWRs), a family of algorithms that strategically trun-
cate the computational horizon to achieve local, embarrassingly parallel computation. Rather than com-
puting the full dense transfer operator L, we construct structured approximations that preserve essential
dependencies while discarding those below numerical significance. We introduce two complementary trun-
cation strategies:

7. Uniform Window. Early termination of the flat parallel scan algorithm 1 yields a banded transfer
operator capturing dependencies up to a fixed lag k. While theoretically appealing with O(nlog k)
work and O(log k) depth, this method inherits the communication-bound characteristics of its par-
ent algorithm. On hierarchical hardware, it offers limited practical advantage over hierarchical
appraches, serving primarily as a theoretical baseline.

7. Jagged Window. Strategic truncation of the hierarchical carrier system—specifically, the approxi-
mation T ~ I,—yields a block-bidiagonal structure that preserves all intra-block and adjacent-block
couplings. The resulting Block Two-Pass (B2P) algorithm eliminates global synchronization entirely,
achieving constant O(1) depth with purely local communication. This approach maintains the ar-
chitectural advantages of hierarchical decomposition while enabling massive parallelism.

Our development prioritizes the jagged window variant, which aligns naturally with the memory hierarchies
and execution models of modern accelerators. The uniform window, while included for completeness, serves
primarily to establish theoretical context and performance bounds. The remainder of this section formal-
izes the computational horizon, presents both truncation strategies with their algorithmic realizations, and
quantifies the accuracy-efficiency trade-offs through rigorous error analysis.

Computational Horizon. In contractive systems where |a;| < p < 1 for some contraction rate p, the
dependencies in the transfer operator L decay exponentially with distance. This decay establishes a
computational horizon—a finite effective range beyond which distant inputs have negligible influence
on the current state. By exploiting this structure through early stopping in parallel algorithms, we
can achieve significant computational efficiencies while maintaining controlled accuracy.

13

The influence of input u; on state x; (for i > j) is given by the product a;.;, whose magnitude is
bounded by |a;.;| < p~7. As the lag £ = i — j increases, this influence diminishes exponentially.
To quantify the computational horizon, consider a desired accuracy level € > 0. A pointwise bound
requires the minimal k. such that p® < ¢ for all £ > k., which yields

loge

S {logpw ’ (20)

since log p < 0 ensures subsequent terms remain smaller. However, for a more precise control over
the cumulative error in the state, we consider the tail sum bound: the effective bandwidth k is the
smallest integer satisfying
¢
> =

(=k+1 1—p

+1

<e. (21)

Solving gives k = [log(e(1 — p))/logp] — 1. This tail bound, assuming bounded inputs |u;| < v,
ensures the total contribution from distant inputs is below ev.

Notably, finite precision imposes an absolute ceiling on the effective range, determined by the largest
lag before the product of coefficients underflows to zero. The slowest possible decay, corresponding
to the largest contraction factor p < 1 representable in a given format, sets this upper bound. This
maximum horizon is therefore an intrinsic property of the number system itself.

Format p ebits Bias p=1-277,"! € €-27P k (normal) k& (with subnormals)
fp32 23 8 127 0.999999940395... 27126 27149 1465264032 1732732863
fpl6 10 5 15 0.999511718750 2714 7% 19869 34061
bf16 7 8 127 0.996093750000 210 = ool 23554
fp8 ebm2 2 5 15 0.875000000000 g e 72 83
fp8 e4m3 3 4 7 0.937500000000 e s 64 96
(a) Computational Horizon (b) Tail Bound

1 T T T T 177

e o
o> o

I
=~

contraction p
contraction p

0.2
1072 104 1073 102 101 10732 104 1073 10~2 107!
target accuracy € target accuracy €
0 2 4 6 8 10 0 2 4 6 8 10
bandwidth k (loga scale) bandwidth k (loga scale)

Figure 4.1: Bandwidth requirements for finite-range approximations. (a) Computational horizon: required band-
width k to achieve target accuracy ¢ for a contraction p. (b) Tail bound: required bandwidth &k so that the tail sum
sz 1 pe < €. Heat maps show log, k; white contours mark power-of-2 bandwidth values.

4.1 Uniform Window Recurrences

The uniform window approach truncates the Kogge-Stone factorization at a predetermined stage, yielding
a banded approximation of the transfer operator. While conceptually straightforward, this strategy inherits

14

Transfer Operator Truncated Transfer Operator

Figure 4.2: Uniform window truncation. The full transfer operator L (left) and its banded approximation L
(right) from Eq. (22), capturing dependencies up to lag k = 5. Early termination of the Kogge-Stone factorization
yields O(nlog k) work complexity.

the communication patterns of flat algorithms, limiting its practical utility on hierarchical hardware. We
present it briefly for theoretical completeness.

At stage log, k of the Kogge-Stone algorithm, coefficient products have decayed to magnitude below p*.
When this falls below threshold e, subsequent stages contribute negligibly. Terminating after log, k stages
yields the truncated operator:

L=T+AZ+ - +(AZ)"! (22)

This captures dependencies up to lag k, achieving work complexity O(nlogk) and depth O(log k). For fixed
bandwidth &, this reduces to linear work with constant depth. Figure 4.2 illustrates this banded structure.

4.2 Jagged Window Recurrences and the Block Two-Pass Algorithm

The hierarchical decomposition of Section 3.2 provides a principled framework for locality-preserving trun-
cation. We exploit the algebraic structure of the carrier system to achieve a careful balance: preserving
essential local and near-neighbor interactions while eliminating costly global synchronization.

Truncation of the carrier system The exact hierarchical factorization (17) expresses the transfer operator as L =
L + GZ,TR, where inter-block dependencies flow through the carrier transfer operator T = (I, — C Z,)~*.
Expanding the Neumann series we obtain:

T=1,+CZ,+(CZ)>+---+(CZ)" . (23)

Each term represents increasingly distant inter-block interactions, attenuated by products of block coeffi-
cients. In stable systems, these products decay exponentially—and are likely to be negligible: these are
partial products of the coefficients ¢; = a; 4.1 which are already bounded by p‘—suggesting a natural trun-
cation point. We adopt the most aggressive meaningful approximation: retaining only the identity term,
T =~ I,. This preserves direct influence between adjacent blocks while discarding the accumulative carrier
dynamics. It yields the jagged window transfer operator:

L=L+GZ,R. (24)

The resulting structure preserves exact dynamics within blocks and the coupling between neighbors, captur-
ing the essential local evolution while sacrificing only the rapidly-decaying global correlations. In practice,
captures all dependencies up to lag ¢ while the jagged part captures part of the dependencies up to lag 2¢ —1
(Less error than uniform truncation with k& = ¢ but more error than uniform truncation with k& = 2¢ — 1).
There is therefore no error on the first 2¢ time steps. As illustrated in Figure 4.3, L exhibits a distinctive

15

=~
(Y
Q

Zy, R

bl x bl bl x bl bl x b

Figure 4.3: Jagged window approximation L = £ + GZ,R. The factorization separates local structure £ (medium
orange) from inter-block coupling via G, Zs, and R.

block-bidiagonal structure that we term a “jagged” window:

L= N P =giml (25)
F,1 Ly

The block structure is visualized in Figure 4.4, showing the diagonal blocks L; and the rank-one off-diagonal
blocks F;;_1. The corresponding input-to-state mapping simplifies remarkably:

jﬁt = Ltut + Ft7t_1’ult_1. (26)

Each block’s state depends only on its own inputs and those of its immediate predecessor.

4.2.1 The Block Two-Pass Algorithm

The truncation T' = I, transforms the three-stage hierarchical algorithm into an elegant two-pass procedure
where the global carrier solve vanishes entirely, replaced by direct propagation of local effective inputs
between adjacent blocks. The first pass utilizes matrix multiplications for the local recurrences w; = Lyuy,
performing independent local solves across all blocks simultaneously while computing both the local state
evolution and extracting the boundary value that serves as an approximate carrier, which is simply the last

Hm
HFN HLQ

[| eo— ey —

IF32 I L3

| o S
IF43 IL4

Figure 4.4: Block decomposition of the transfer operator showing diagonal blocks L; = tril(g:g; ') (lower triangular,
capturing intra-block dependencies) and off-diagonal blocks Fis = gifBesta (rank-one factorization, mediating inter-
block carrier propagation). The scalar §;s represents the compound attenuation between blocks.

16

component s; = v; = wy . The second pass reconstructs the full state as ; = w; + g:v:—1 by injecting these
boundary values into adjacent blocks. This B2P algorithm achieves optimal complexity for local parallel
computation with constant depth O(1) and work O(b¢?d + bld) = O(nd). Making it linear in sequence
length for fixed block size £.

Algorithm 4 BLock Two-PAsS ALGORITHM (B2P)

Require: Block structure n = b¢, inputs (u;)’_;, coefficients (a;)?_;
Ensure: Approximate state sequence (&;)2_;
PAss I: PARALLEL LOCAL SOLVES
: for all ¢ € [b] in parallel do
Materialize L; and g;
w; <~ Lyuy > Local solve via GEMM
Vg & Wiy > Extract effective input
end for
PAss II: PARALLEL RECONSTRUCTION WITH SHIFT
v9 0
for all ¢t € [b] in parallel do
Ty — wi + grve_1 > Inject neighbor contribution
end for

4.2.2 Hardware Realization on Modern GPUs

The B2P algorithm is designed to map directly onto the memory and execution hierarchies of modern
accelerators. We tailor its implementation for NVIDIA GPUs by aligning the block size ¢ with the dimensions
of warp-level matrix multiply-accumulate (wmma) instructions, which target Tensor Cores and operate on
small, fixed-size tiles. By setting the block size to ¢ = 16, we can assign the computation for each time
block to a single 32-thread warp, maximizing hardware utilization. A cooperative thread array (CTA, or
thread block), a group of warps running on a single streaming multiprocessor (SM), can then process a
larger sequence segment, communicating intermediate results via fast on-chip shared memory (SMEM). On
recent architectures, clusters of CTAs can further co-operate using distributed shared memory (DSMEM)
for low-latency exchange across a larger portion of the chip.

The parametrization of the recurrence 5, is directly guided by the underlying hardware. Tensor Cores
are optimized for dense matrix-matrix multiplications. A naive implementation that processes each of the d
feature channels independently with a matrix-vector product would fail to leverage these cores. To maximize
hardware utilization and following previous work (Dao, 2024; Ku et al., 2025), we structure the computation
into heads. Within each head, the same set of recurrence coefficients is shared across all d feature dimensions.
This architectural choice allows us to treat an entire input block u; € R**? as a dense matrix. The local solve
w; = Lyu, is then computed as a single matrix-matrix product, perfectly matching the execution model of
Tensor Cores. This avoids inefficient, sequential processing and fully exploits the available parallelism. We
typically set the feature dimension per head to d = 16, aligning with the 16 x 16 tile size of wmma instructions.

The resulting implementation, detailed in Algorithm 5, is actually a single-pass kernel from the perspective
of global memory. Each warp materializes its local operators L; and g; on-the-fly from the input coefficients,
computes the local solve w;, and extracts the carrier v;. The carrier is passed to the next warp via SMEM
or DSMEM, which then computes its final state. This pipelined dataflow ensures that inputs are read from
global memory only once and outputs are written only once, while all intermediate carrier traffic remains
on-chip, minimizing expensive off-chip memory access.

Implementation details. We implement the warp-level operations using CUTLASS, configuring a 32-thread
MmaTensorOp for a 16 x 16 x 16 tile shape. The operator acts on L; (fpl16/bfl6), u; (fpl6/bfl6), and
accumulates into w; using fp32 for precision. The on-chip extent of this approach is significant: a CTA
with 32 warps can process 32 x 16 = 512 time steps, and a cluster of 16 CTAs on an H100 can process up

17

threadblock ¢ threadblock ¢ + 1
warp t — 1 warp ¢t warp t + 1

wmma wmma wmma

gt—1 gt gt+1 —
rank-1 updat rank-1 updat rank-1 updat

- + -
[TTT1T Sl [TTT1T St [TTT1T
‘% smem % dsmem

Figure 4.5: Block Two-Pass across three consecutive blocks. Top: per-block WMMA matmul L;u: with head di-
mension ¢. Bottom: each pair runs in a single GPU warp; the carrier s; is sent to the next warp for the rank-1
reconstruction. Intra-threadblock communication uses shared memory (smem) while inter-threadblock communica-
tion uses distributed shared memory (dsmem).

()

to 16 x 512 = 8192 time steps without any global memory synchronization. For sequences exceeding this
length, we segment the computation, checkpointing only the carrier vector between segments.

5 Layer Design

We introduce Phalanx layers for language modeling built using the Sliding Window Recurrence (SWR)
sequence mixing primitive from Section 4. These layers exemplify how the Block Two-Pass algorithm can be
instantiated as efficient local sequence mixers that complement global attention layers in hybrid architectures.

5.1 Parametrization Space and Design Philosophy

A parametrization of linear recurrences into a neural network layer requires several design choices: how
to generate the recurrence coefficients a;, whether to include gating mechanisms, how to share parameters
across feature dimensions, and what activation functions to employ to bound the recurrence coefficients. The
space of possible parametrizations is vast, Yang et al. (2024) provides a comprehensive taxonomy of linear
recurrence variants, ranging from complex featurizers with polynomial expansions to sophisticated gating
schemes.

We deliberately adopt a minimalist approach. Rather than exploring the full parametrization space, we
focus on demonstrating that the SWR, mixer itself, with its hardware-aligned block structure and local com-
putation, provides a good efficiency-quality trade-off. Our design choices prioritize simplicity and hardware
efficiency:

1. Linear projections for all feature groups.
i1. Sigmoid activation for projecting the recurrence coefficients a; to the stable range [0, 1].

iii. Head-based parameter sharing aligned with the 16 x 16 tile structure discussed in Section 4.2.2.

We maintain independent heads where each head feature evolves its own state with shared coefficients and
no head feature mixing occurs during the recurrence computation. This structure (also used in recent works

18

Algorithm 5 Block Two-Pass Algorithm (GPU Implementation)

Require: Block size £, inputs u € R*?, coefficients a € R
Ensure: Approximate states & € R¥*¢

1: for all blocks t € [b] in parallel assigned to warp ¢t do

2: On chip do:

3: Materialize L;, g; € RY*¢ from coefficients a; > In registers/SMEM
4: Load input tile u; € R*? from global memory to SMEM

5: wy < Lyuy > Matrix multiplication via wmma
6: Vg 4 Wiy € R1xd > Extract carrier from last row of wy
7 Write v; to SMEM/DSMEM

8: Synchronize warps within CTA /cluster

9: if t > 1 then

10: Read v;—1 from SMEM/DSMEM

11: Ty ¢ Wy + gy > Apply rank-1 update
12: else

13: Ty — Wy

14: end if

15: Write block output @; to global memory

16: end for

(Dao, 2024; Ku et al., 2025)) maps directly onto our tensor core model for the SWR mixer, in contrast to
architectures like GLA and MultiHyena (Massaroli et al., 2023; Yang et al., 2023) that employ more complex
head interactions leading to a matrix-valued state that requires a different adaptation of our kernel.

5.2 The Phalanx Layer

Notation. We adopt Einstein summation convention where repeated indices imply summation. Given an
input sequence v € R™*P where D is the model dimension, we decompose computations across h heads,
each managing d = D/h channels. Throughout, we use roman subscripts (i, j,t) for position/time indices,
Greek superscripts («, 3, 1, v) for channel indices, and 7 for head indices. Thus ;" denotes channel x in
head 7 at position i, and expressions like ¢;"k}" indicate summation over the repeated index v.
Featurization. The input is first projected to create the recurrence coeflicients and gating features. Following
the hardware considerations from Section 4.2.2, we organize computation into h heads, where each head
shares the same recurrence coefficients a; across its d channels. Using Einstein notation (where repeated
indices imply summation):

al = o(W"8 uf) (recurrence coefficient, sigmoid-bounded)

Q" = Q"“ﬂuf
g — BB
7 K3

o = V"“Buf

(
(query-like gate) (27)
(key-like gate)

(

value)

Here W € R"*P projects to head-wise recurrence coefficients, while Q, K,V € R'¥4XD are the stan-
dard attention-like projections”. The sigmoid activation ensures a] € (0,1), guaranteeing stability without
additional regularization.

Token and channel mixing. We implement a simple SWR mixer with double gating:

2The three-dimensional structure of Q, K,V arises from absorbing the reshape operation into the linear projection: rather
than first projecting uf to a flat D-dimensional vector and then reshaping to (h,d), we directly parameterize the composed
transformation. Since reshaping is itself a linear operation (a permutation of elements), this composition remains linear and

can be represented as a single tensor contraction

19

[MLP (token-wise) | !

RMS Norm H
1

@ /

(Multi-Head Attention | /

RMS Norm H
a]
]

[MLP (token-wise) | !

N [Linear W] [Linear K] [Linear V] [Linear Q]
put /

j— %
L

Figure 5.1: Hybrid architecture with Phalanx-MHA blocks (left) and Phalanx micro-architecture (right). The B2P
mixer implements the SWR with pre-gate k,v and post-gate g projections.

ﬁ?“ _ k:?“ . UZW (pre-gate)
a::’“ _ f;’jﬁ;’” (SWR (24) via B2P) (28)

yt = g™z + o (post-gate with residual)

where L is computed using the coefficients {a}}. Finally, we apply an output projection to mix information
across heads and produce the layer output:

y = Oy (output projection) (29)
with O € RP*P*d_ Qverall, the input-output mapping of the Phalanx layer can be compactly written as:

Yo = 0 [(Q”“ﬁuf)i?j(K””u;)(V""‘;u‘;) + V"“Buf (30)

Gate sharing across heads Modern transformer variants use strategies to share parameters and increase effi-
ciency. One common strategy is GQA (Ainslie et al., 2023) to share key and values across groups of heads.
Similar head sharing methods have been explored for recurrence layers Dao (2024). We apply group shar-
ing separately to K and Q projections, such that within each group, multiple heads share the same gate
parameters.

5.3 Integration in Hybrid Architectures

The Phalanx layer is designed as a building block for hybrid architectures, where it handles local sequence
mixing while global attention layers capture long-range dependencies. This specialization of local recurrence
for efficient local operations and global attention for longer range modeling enables scaling to long sequences
without sacrificing quality. The next section examines how these architectural choices translate to end-to-end
performance in language modeling tasks.

20

Mixer Forward Pass Time

102 T T T T T T T
| | == B2P (ours) i
| | —A=— Flash Attention 3 s
r Flex Attention SWA-2048]
10! | Flex Attention SWA-128 (+sinks) &
— B SSD (Mamba-2)]
£ I 1
g [N
£ 0 i
10 E
1071 ¢ E
| | | | |]

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K
Sequence Length
Figure 5.2: Phalanx has faster forward pass speed across sequence lengths (D = 2048, h = 128, d = 16, £ = 16).

6 Experiments

Experimental Setup. We compare Phalanx + Attention hybrids against state-of-the-art baselines, including
Transformers and Sliding Window Attention (SWA) + Transformer hybrids, focusing on perplexity and
end-to-end training speed.

All models are trained at 1.3B parameters for 100B tokens on FineWeb-Edu with identical settings. We
use the Qwen3 tokenizer (vocab size 151,669), with 16 layers total and tied embeddings/output projections
similar to Llama 3 (Dubey et al., 2024; Yang et al., 2025). Transformer layers, sliding window attention, use
16 heads and 8 heads for k and v, while Phalanx layers have a head size of 16 and heads for k and v. Training
uses a sequence length of 8192, batch size of 1M tokens, a peak learning rate of 3 x 10~* with 2B-token
warmup, gradient clipping at 1.0, and cosine decay of the learning rate to 10% of the peak. We implement
training in TorchTitan, extending it with features required for our setup. We use the FlexAttention
(PyTorch Team, 2024) backend for SWA layers, while full-attention layers use the Flash Attention Dao
(2023) backend for SDP. We further introduce a Phalanx-multihybrid model, which has alternating blocks
of [Phalanx, SWA-128 with sinks, Phalanx, Attention)].

To compare throughput, we test on H100 GPUs at different sequence lengths. All models are evaluated on
sequence lengths 4096, 8192, 16384, 32768 using 4 GPUs. We use a global batch size of 128 and micro batch
sizes of 8, 4, 1. In addition to Transformer and SWA + Transformer hybrids, we further compare throughput
against linear recurrence baselines using the Mamba-2 implementation from flash linear attention (Dao, 2024;
Yang & Zhang, 2024).

Comparing Phalanx variants. Based on comparing Phalanx variants on 40B tokens, we progress with training
our design for Phalanx. To enable Phalanx to be decoded in recurrence mode, we can enforce decay to
be large by bounding the maximum value of the transfer matrix. To test this we run an ablation enforcing
transfer matrix values of 0.8 or less by scaling the sigmoid parametrization. Based on the better performance
of Phalanx over these alternatives C, we further perform two ablations at 10B tokens to test a version without
input varying learned decay per head and a version without any input or output gating. We find these have
higher loss compared to our layer (Phalanx-fixed-decay: 2.764, Phalanx-no-gates 2.713, Phalanx 2.696 at
10B tokens). Based on these results, we proceed with Phalanx. We also explore grouping heads for K and Q
and found no deterioration when using 32, 16, or 8 groups for K and Q. We proceed with 8 groups for fair
comparisons with other baselines.

21

Perplexity vs Steps Perplexity vs Training Time
18 ¢ T T T T 18 T T T T T T T

Perplexity

| | |
0.2 0.4 0.6 0.8 1 10 20 30 40 50 60 70

Training Steps 105 Training Time (hours)
= Transformer++ === Phalanx 1:1 ===- Phalanx 3:1 SWA-128 1:1 SWA-128 3:1

Figure 6.1: FineWeb-Edu Loss for Transformer++ and windowed hybrids

Time to Reach Perplexity < 11.0

SWA-128 Hybrid 1:1 (+sinks) 68.7h

Phalanx Hybrid 1:1 59.4h

! ! ! J
40 50 60 70 80
Hours

Figure 6.2: Wall-clock time to reach target perplexity on FineWeb-Edu.

Training results. As shown in Figure 6.1 and Figure 6.2, Phalanx hybrid models achieve highest overall ef-
ficiency while maintaining quality. The Phalanx-SWA-multihybrid trains 24% faster than Transformer++
and 10% faster than sliding-window attention with comparable loss. At 1:1 and 3:1 hybrid ratios, Phalanx
achieves between 18% and 60% speedup against Transformers across sequence lengths 4K to 16K (Figure 6.2).
Overall, the proposed Phalanx hybrids improve the quality—efficiency trade-off, delivering significantly im-
proved training wall-clock time compared to all baselines while matching per-step loss.

Sliding Window Attention. The specific implementation of SWA has a significant impact on both throughput
and loss performance.

Consistent with prior work (Agarwal et al., 2025; Wang et al., 2025a), we observe that attention sinks and
scaling are critical for training short-context SWA layers. Without scaling, a window length of 128 leads to
substantially degraded performance, with a +0.384 increase in loss compared to full attention. Incorporating
attention sinks and scaling within FlexAttention reduces throughput but improves the loss gap to -0.001

Model Hybrid Ratio Perplexity A Perplexity Train. k tok/s/GPU Speedup
Transformer++ - 10.95 0.00 49.4k 1.00x
SWA-128 + sinks 1:1 10.90 —0.05 51.2k 1.04x
SWA-2048 1:1 10.94 —0.01 55.9k 1.13x
SWA-128 1:1 16.07 +5.12 60.4k 1.22x
SWA-128 + sinks 3:1 10.91 —0.04 55.2k 1.12x
Phalanx 1:1 10.85 —0.10 58.5k 1.18x
Phalanx 3:1 11.01 +0.06 64.4k 1.30x
Phalanx-SWA-multihybrid 3:1 10.89 —0.06 61.4k 1.24x

22

relative to the Transformer baseline. At larger window sizes, such as SWA-2048, model quality is comparable
to full attention while being 13% faster than Transformers.

1:1 Hybrid Models - Throughput 3:1 Hybrid Models - Throughput

| . 4

50 |-

—&— Transformer-++
Phalanx Hybrid 1:1

40 - —a— SWA-2048 Hybrid 1:1

SWA-128 Hybrid 1:1 (+sinks)

—8— Transformer+-+
n 40 |- Phalanx Hybrid 3:1
Phalanx+SWA Hybrid 3:1

Throughput (x1000 tokens/s)

—&— Mamba2 Hybrid 1:1 SWA-128 Hybrid 3:1 (+sinks)
30 | | | 30 | | |
4K 8K 16K 4K 8K 16K
Sequence Length Sequence Length
1:1 Hybrid Models - Speedup 3:1 Hybrid Models - Speedup
1.6 l T l

i Transformer++ baseline 1.6 - Transformer++ baseline N

‘12 L5 Phalanx Hybrid 1:1 115k Phalanx Hybrid 3:1 -

5 1.4 —&— SWA-2048 Hybrid 1:1 144 Phalanx+SWA Hybrid 3:1

Y . | 1

2 13] SWA-128 Hybrid 1:1 (+sinks) N SWA-128 Hybrid 3:1 (+sinks)

E ' —a— Mamba2 Hybrid 1:1 4 1.3 - B

L2 4 19l |

> 11 s

(o [- 1.1+ -

3 e

3 1 - 1 .

(o}

v o9 \ \ \ 0.9 \ \ |

4K 8K 16K 4K 8K 16K

Sequence Length Sequence Length

Figure 6.3: Training throughput and speedups across sequence lengths for hybrid models (1:1, 3:1).

7 Conclusion

We propose a framework for studying linear recurrences as matrices enabling us to connect them to modern
hardware level. Based on these insights we introduce Sliding Window Recurrences to provide local, efficient
sequence mixer operators. Bounded, block-structured recurrences are not intended to recover arbitrarily long-
range dependencies in isolation; instead, they are designed to minimize long-range data movement across the
GPU memory hierarchy while providing high-throughput token mixing. This enables hybrid models where
attention handles global context and local context is handled by efficient mixers. Consequently, the key
evaluation is how a layer contributes to end-to-end throughput, accuracy, and scaling when composed with
complementary global modules like attention. We apply this paradigm to develop Phalanx hybrid models
and demonstrate their efficiency and performance.

References

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K Arora,
Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-o0ss-120b & gpt-o0ss-20b model card. arXiv preprint
arXiv:2508.10925, 2025.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit Sanghai.
Gga: Training generalized multi-query transformer models from multi-head checkpoints. arXiv preprint
arXiv:2305.13245, 2023.

23

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley, James Zou,
Atri Rudra, and Christopher Ré. Simple linear attention language models balance the recall-throughput
tradeoff. arXiv preprint arXiv:2402.18668, 2024.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150, 2020.

Guy E Blelloch. Prefix sums and their applications. 1990.

Richard P. Brent and H. T. Kung. A regular layout for parallel adders. IEEE Transactions on Computers,
100(3):260-264, 1982.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877-1901, 2020.

Keshigeyan Chandrasegaran, Michael Poli, Daniel Y Fu, Dongjun Kim, Lea M Hadzic, Manling Li, Agrim
Gupta, Stefano Massaroli, Azalia Mirhoseini, Juan Carlos Niebles, et al. Exploring diffusion transformer
designs via grafting. arXiv preprint arXiv:2506.05340, 2025.

Shiv Chandrasekaran, Patrick Dewilde, Ming Gu, T Pals, Xiaorui Sun, Alle-Jan van der Veen, and Daniel
White. Some fast algorithms for sequentially semiseparable representations. SIAM Journal on Matrix
Analysis and Applications, 27(2):341-364, 2005.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv preprint
arXiw:2307.08691, 2023.

Tri Dao. State space duality (mamba-2) part iii — the algorithm, 2024. URL https://tridao.me/blog/
2024 /mamba2-part3-algorithm/.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through struc-
tured state space duality. arXiv preprint arXiv:2405.21060, 2024.

P Dewilde and AJ van der Veen. Semi-and quasi-separable systems. In Operator Theory, pp. 901-930.
Springer, 2014.

Patrick Dewilde and Alle-Jan Van der Veen. Time-varying systems and computations. Springer Science &
Business Media, 1998.

Patrick Dewilde, Klaus Diepold, and Alle-Jan van der Veen. Time-variant and quasi-separable systems:
matrix theory, recursions and computations. 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv e-prints,
pp. arXiv—2407, 2024.

I Gohberg, MA Kaashoek, and L Lerer. Minimality and realization of discrete time-varying systems. In
Time-variant systems and interpolation, pp. 261-296. Springer, 1992.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Mark Harris, Shubhabrata Sengupta, and John D. Owens. Parallel prefix sum (scan) with CUDA. In Hubert
Nguyen (ed.), GPU Gems 3, chapter 39, pp. 851-876. Addison-Wesley Professional, 2007.

David E Keyes, Hatem Ltaief, and George Turkiyyah. Hierarchical algorithms on hierarchical architectures.
Philosophical Transactions of the Royal Society A, 378(2166):20190055, 2020.

Peter M. Kogge and Harold S. Stone. A parallel algorithm for the efficient solution of a general class of
recurrence equations. IEEE Transactions on Computers, 100(8):786-793, 2009.

24

https://tridao.me/blog/2024/mamba2-part3-algorithm/
https://tridao.me/blog/2024/mamba2-part3-algorithm/

Jerome Ku, Eric Nguyen, David W Romero, Garyk Brixi, Brandon Yang, Anton Vorontsov, Ali Taghibakhshi,
Amy X Lu, Dave P Burke, Greg Brockman, et al. Systems and algorithms for convolutional multi-hybrid
language models at scale. arXiv preprint arXiv:2503.01868, 2025.

Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length. arXiv preprint
arXiv:1709.04057, 2017.

Stefano Massaroli, Michael Poli, Dan Fu, Hermann Kumbong, Rom Parnichkun, David Romero, Aman
Timalsina, Quinn McIntyre, Beidi Chen, Atri Rudra, et al. Laughing hyena distillery: Extracting compact
recurrences from convolutions. Advances in Neural Information Processing Systems, 36:17072-17116, 2023.

Duane Merrill and Michael Garland. Single-pass parallel prefix scan with decoupled look-back. NVIDIA,
Tech. Rep. NVR-2016-002, 2016.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua Bengio,
Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional language models. In
International Conference on Machine Learning, pp. 28043-28078. PMLR, 2023.

Michael Poli, Armin W Thomas, Eric Nguyen, Pragaash Ponnusamy, Bjorn Deiseroth, Kristian Kersting,
Taiji Suzuki, Brian Hie, Stefano Ermon, Christopher Ré, et al. Mechanistic design and scaling of hybrid
architectures. arXiv preprint arXiv:24083.17844, 2024.

PyTorch Team. Flexattention: The flexibility of pytorch with the performance of flashattention. https:
//pytorch.org/blog/flexattention/, November 2024. PyTorch Blog.

David W Romero, Anna Kuzina, Erik J Bekkers, Jakub M Tomczak, and Mark Hoogendoorn. Ckconv:
Continuous kernel convolution for sequential data. arXiv preprint arXiv:2102.02611, 2021.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for sequence
modeling. arXiv preprint arXiv:2208.04933, 2022.

Armin W Thomas, Rom Parnichkun, Alexander Amini, Stefano Massaroli, and Michael Poli. Star: Synthesis
of tailored architectures. arXiv preprint arXiv:2411.17800, 2024.

Raf Vandebril, Marc Van Barel, and Nicola Mastronardi. Matriz computations and semiseparable matrices:
linear systems, volume 1. JHU Press, 2008.

Bailin Wang, Chang Lan, Chong Wang, and Ruoming Pang. Rattention: Towards the minimal sliding
window size in local-global attention models. arXiv preprint arXiv:2506.15545, 2025a.

Dustin Wang, Rui-Jie Zhu, Steven Abreu, Yong Shan, Taylor Kergan, Yuqi Pan, Yuhong Chou, Zheng
Li, Ge Zhang, Wenhao Huang, et al. A systematic analysis of hybrid linear attention. arXiv preprint
arXiv:2507.06457, 2025b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Songlin Yang and Yu Zhang. Fla: A triton-based library for hardware-efficient implementations of linear
attention mechanism. January 2024. URL https://github.com/fla-org/flash-linear-attention.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention trans-
formers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with delta rule.
arXiv preprint arXiv:2412.06464, 2024.

Michael Zhang, Simran Arora, Rahul Chalamala, Alan Wu, Benjamin Spector, Aaryan Singhal, Krithik
Ramesh, and Christopher Ré. Lolcats: On low-rank linearizing of large language models. arXiv preprint
arXiv:2410.10254, 2024.

25

https://pytorch.org/blog/flexattention/
https://pytorch.org/blog/flexattention/
https://github.com/fla-org/flash-linear-attention

Appendix

Appendix Contents

A Algebraic Properties of Weighted Shifts 26
B Three Proofs of the Binary Factorization of Geometric Series 27
C Additional Phalanx Ablation 29

A Algebraic Properties of Weighted Shifts

Let IF be a field, and let M € F**" be a strictly lower triangular matrix, i.e., M;; = 0 whenever ¢ < j. Let
{ei}_; denote the standard basis of . We define the standard descending flag of subspaces:

F*=U,D>U; D> --- DU, DUyt = {0},

where U}, := span{e;}!_,. Note that dim(U) =n —k+ 1.

Lemma 1 (Nilpotency of strictly lower triangular matrices). If M € F"*" is strictly lower triangular, then
M™=0.

Proof. We prove that M (Uy) C Uy41 for all k = 1,...,n by examining the action of M on the basis vectors
of Uy. If e; € Uy, then j > k. The vector Me; corresponds to the j-th column of M:

n
M@j = Z Mijez-.
i=1
Since M is strictly lower triangular, M;; = 0 if ¢ < j. Thus, the summation simplifies to:

Mej = Z Mijei.
i=j+1
This resulting vector is in the span of {e;11,...,e,}, so Me; € Ujqq. Since j > k, we have j +1 > k+ 1,
which implies Uj41 C Ugy1. By linearity, M (Uy) C Ug41. Applying this iteratively to the entire space
F™ = U; gives:
M"™(Uy) € M" ! (Us) S M"?(Us) € -+ € M(Up) € Upy1.

Since U,+1 = {0}, we have M"™(F™) = {0}. Therefore, M™ must be the zero matrix. O

A crucial consequence of a matrix being nilpotent is that its subtraction from the identity matrix yields an
invertible matrix.

Corollary A.1 (Invertibility of I — M). If M € F™"*"™ is strictly lower triangular, then the matriz I — M
is invertible.

Proof. By Lemma 1, M is nilpotent with M™ = 0. We can explicitly construct the inverse using a finite
geometric series. Let:
S=I+M+M*+-- +M""

26

We verify that S is the inverse of I — M:

(I-M)S=I-M)YT+M+---+M"1)
=I+M+- M"Y - (M+M*+--+M" '+ M")
=I1-M"

Since M"™ = 0, we have (I — M)S = I. Similarly, S(I — M) = I. Thus, I — M is invertible with
(I-M)t=8. O

The case of weighted shift matrices AZ. A concrete illustration of this theory is provided by the weighted shift
matrices with which we construct the transfer operator of scalar linear recurrences. Let Z be the down-shift
matrix on R™ with entries Z;; = J; j4+1 (ones on the first subdiagonal), and let A = diag(ai,...,a,) be the
diagonal matrix of coefficients. The weighted shift AZ has entries (AZ);; = a,Z;j, resulting in the following
structure:

0 0 -~ 0 0
a 0 -~ 0 0
Az_|0 a -~ 0 0
0 0 - a, O

The matrix AZ is strictly lower triangular, and by Lemma 1, (AZ)" = 0.

The action of AZ on the standard basis visualizes the movement down the flag. For j = 1,...,n — 1,
(AZ)e; = aji1e41 and (AZ)e, =0,

a2 as An
e —r ey —> ez —> - —>ep_1 — ey — 0y

For k> 0 and j € [n],
(AZ)*e; = ajipji1-€jrks (where e, := 0, if m > n),

using the product notation a;.; = a;a;—1 - - a; from Section 3. In particular, (AZ)"le; = apa - e,. The
nilpotency index m (the smallest integer with (AZ)™ = 0) satisfies m < n. Equality m = n occurs if and
only if as,...,a, are all nonzero. If the weights allow for a shorter path to zero (i.e., some ap41 = 0), the
index is smaller. More generally, if the longest contiguous block of nonzero weights among (as, ..., a,) has
length L, then m = L + 1.

Connection to the transfer operator. The results above provide the algebraic foundation for the transfer operator
L= (I—- AZ)™ ! in Section 3. By Corollary A.1 (with M = AZ), the matrix I — AZ is always invertible,
ensuring that the linear system (2) has a unique solution. Moreover, the nilpotency of AZ guarantees that the
Neumann series expansion (3) terminates after finitely many terms, yielding an exact representation rather
than an infinite series. This finite expansion is crucial for both the theoretical analysis and the practical
computation of the transfer operator, enabling the explicit characterization of its entries as L;; = a;.;41 and
facilitating the derivation of efficient parallel algorithms.

B Three Proofs of the Binary Factorization of Geometric Series

The binary factorization of the geometric series is fundamental to parallel algorithms for linear recurrences,
particularly the Kogge-Stone algorithm (Kogge & Stone, 2009) discussed in the main text. This identity
shows how a sum of matrix powers can be factorized into a product of sparse matrices, enabling logarithmic-
depth parallel computation. While the identity is algebraic and holds in any ring, its application to the
transfer operator (I — AZ)~?! of linear recurrences reveals deep connections between parallel algorithms and
matrix factorizations. We present three proofs that illuminate different aspects of this remarkable identity:
the first uses telescoping cancellation, the second employs mathematical induction, and the third exploits
the binary expansion of integers.

27

Proposition B.1 (Binary Factorization of Geometric Series). Let M € R™*"™ be any matriz and let n = 2™
for some integer m > 1. The following algebraic identity holds:

n—1 m—1

ZMk [T+ 2. (31)

7=0

If (I — M) is invertible, the sum is the partial sum of the Neumann series, and both sides are equal to
(I — M™)(I —M)™L. In the special case where M is nilpotent with M™ = 0, this simplifies to (I — M)~

Proof 1 (Difference of Squares). This proof relies on expressing the term I — M™ in two different ways.
First, by repeatedly applying the difference of squares formula we can expand I — M"™ = I — M?" as a
product:

I-M>" =(I+M>" Y(I-M>"") (32)
—(I+M" YT +M" YT -M") (33)
=T +M*). (I+M»I+M)I-M) (34)
m—1
=TT+ m?)1 - nr) (35)
7=0

Second, the standard summation formula for a finite geometric series gives the same term:

I—M”:EM’“(I—M). (36)
k=0

By equating the two expressions for I — M™, we have

m— n—1

H (I+M?)(I - M) => M1 - M). (37)

=0 k=0
The identity (31) holds in the ring of polynomials in M. If (I — M) is invertible, we can multiply both
sides by (I — M)_1 to establish the equality, but the underlying identity is purely algebraic and holds
regardless. O

Proof 2 (Induction). We prove the algebraic identity (31) by induction. For any ¢ > 1, let S;(M) =

i;_()l MP* and P,(M) = H;;E(I + M?). We show that S;(M) = P,(M) for all t > 1. Base case:
For t = 1, we have 2! = 2.

SI(M)=T+M (38)

P(M)=T+M* =1+ M. (39)

The identity holds. Inductive step: Assume the identity S;(M) = P,(M) holds for some ¢ > 1. We seek
to prove it for ¢ + 1.

2ttl_q 2t—1 2t+l_q
Sep(M)= > M"= Z M+ Y M* (40)
k=0 k=2t
2t 1
= Si(M)+M* > M (41)
=0
= S(M) + M* S,(M) = (I + M*)S,(M). (42)

28

Using the inductive hypothesis S;(M) = P,(M), we get

t—1 t
Spa1(M) = (I + M*)P,(M) = (I + M*) [T +M?) = [[I + M?) = Py (M). (43)
§=0 §=0
This completes the induction. Setting ¢ = m gives the desired result. O

Proof 8 (Binary Expansion). We expand the product on the right-hand side of (31). Each term in the

expansion corresponds to a unique choice of either I or M 2’ for each factor j€A{0,...,m—1}. We can
represent such a choice by a binary vector b = (bg, b1, ...,by,—1) € {0,1}™. The expansion is a sum over all
2™ possible choices of b:

-1

S

777.1

TESYEOE SR | (FYSIUI S VO SIIES (4)

be{0,1}m j=0 be{0,1}m

<.
I
=)

The map from a binary vector b to the integer k = > 7" 5 b;27 s a bijection from {0,1}™ to the set of
integers {0, 1,...,2™ — 1}. Therefore, summing over all p0531b1e binary vectors b is equivalent to summing
over all integer powers of M from k=0 to k =2 — 1:

-1

3

m—1 m—1 ;
T+M¥) = 3 [P = 3 Mo W (45)

0 be{0,1}m j=0 be{0,1}m

J

The map from a binary vector b to the integer k = Z;-TZOI b;27 is a bijection from {0,1}™ to the set of
integers {0,1,...,2™ — 1}. Therefore, summing over all possible binary vectors b is equivalent to summing
over all integer powers of M from k=0 to k =2 — 1:

m—1 2m_1
[[a+nm)=>" m* (46)
=0 k=0
O
C Additional Phalanx Ablation
Ablations Loss at 40B tokens
Transformer+-+ 2.52
Phalanx 2.51
Phalanx-decay 2.56

Table C.1: Comparing loss of Phalanx with set minimal decay (transfer matrix maximum of 0.8)

29

	Introduction
	Related Work
	A Matrix Theory of Linear Recurrences
	Matrix Factorizations and Flat Algorithms
	Hierachical Decomposition and Algorithms
	Tiling the Transfer Operator
	From Factorization to Computation

	Sliding Window Recurrences
	Uniform Window Recurrences
	Jagged Window Recurrences and the Block Two-Pass Algorithm
	The Block Two-Pass Algorithm
	Hardware Realization on Modern GPUs

	Layer Design
	Parametrization Space and Design Philosophy
	The Phalanx Layer
	Integration in Hybrid Architectures

	Experiments
	Conclusion
	Algebraic Properties of Weighted Shifts
	Three Proofs of the Binary Factorization of Geometric Series
	Additional Phalanx Ablation

